

SD1446 RF POWER BIPOLAR TRANSISTORS UHF MOBILE APPLICATIONS

FEATURES SUMMARY

- 50 MHz
- 12.5 VOLTS
- EFFICIENCY 55%
- COMMON EMITTER
- GOLD METALLIZATION
- P_{OUT} = 70 W MIN. WITH 10 dB GAIN

DESCRIPTION

The SD1446 is a 12.5 V Class C epitaxial silicon NPN planar transistor designed primarily for land mobile transmitter applications. This device utilizes emitter ballasting and is extremely stable and capable of withstanding high VSWR under operating conditions.

Figure 1. Package

Figure 2. Pin Connection

Table 1. Order Codes

Order Codes	Marking	Package	Packaging	
SD1446	SD1446	M113	PLASTIC TRAYS	

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	36	V
V _{CEO}	Collector-Emitter Voltage	18	V
V _{EBO}	Emitter-Base Voltage	3.5	V
Ic	Device Current	12.0	А
P _{DISS}	Power Dissipation	183	W
TJ	Junction Temperature	+200	°C
T _{STG}	Storage Temperature	– 65 to +150	°C

Table 2. Absolute Maximum Ratings ($T_{case} = 25^{\circ}C$)

Table 3. Thermal Data

Symbol	Parameter	Value	Unit
R _{TH(j-c)}	Junction-Case Thermal Resistance	1.05	°C/W

ELECTRICAL SPECIFICATIONS (T_{CASE} = 25°C)

Table 4. Static

Symbol	Test Conditions	Value			Unit
Symbol	Test conditions	Min.	Тур.	Max.	onit
BV _{CBO}	$I_{C} = 50 \text{ mA}; I_{E} = 0 \text{ mA}$	36	_	—	V
BV _{CES}	$I_{C} = 100 \text{ mA}; V_{BE} = 0 \text{ V}$	36		—	V
BV _{CEO}	$I_{C} = 50 \text{ mA}; I_{B} = 0 \text{ mA}$	18	_	—	V
BV _{EBO}	I _E = 10 mA; I _C = 0 mA	3.5		—	V
ICES	V _{CE} = 15 V; I _E = 0 mA	—		10	mA
h _{FE}	$V_{CE} = 5 \text{ V}; \text{ I}_{C} = 5 \text{ A}$	10	_	—	_

Table 5. Dynamic

Symbol	Test Conditions	Value			Unit
		Min.	Тур.	Max.	Unit
Pout	f = 50 MHz; P_{IN} = 7 W; V_{CE} = 12.5 V	70	—	—	W
GP	f = 50 MHz; P_{IN} = 7 W; V_{CE} = 12.5 V	10	—	—	dB
ης	$f = 50 \text{ MHz}; P_{IN} = 7 \text{ W}; V_{CE} = 12.5 \text{ V}$	—	55	—	%
C _{OB}	f = 1 MHz; V _{CB} = 12.5 V	—	—	300	pF

TYPICAL PERFORMANCE

Figure 3. Power Output vs Power Input

IMPEDANCE DATA

Figure 4. Typical Input Impedance

Figure 5. Typical Collector Load Impedance

Table 6. Impedance Data⁽¹⁾

FREQ.	Ζ_{ΙΝ} (Ω)	Ζ_{CL} (Ω)
50 MHz	0.8 + j 0.9	1.2 + j 0.6

Note: 1. P_{OUT} = 70W; V_{CE} = 12.5 V

SD1446

TEST CIRCUIT

Figure 6. Test Circuit

Table 7. Test Circuit

C1, C4	50 - 380pF Arco 465
C2	110 - 580pF Arco 467
C3	140 - 680pF Arco 468
C5	9 - 180pF Arco 463
C6	10µF, 35Vdc, Electrolytic
C7	.01µF Erie
C8	1000pF Unelco
L1	2 1/2 Turns, #14 Awg, Tinned, 1/4" I.D. Loose Wound
L2	10 Turns, #28 AWG, Enameled on Ferroxcube Sleeve #3B
L3	1 1/2 Turns, #12 AWG, Tinned, 3/8" I.D. Loose Wound
L4	8 Turns, #18 AWG on 1/4" I.D. Coil form 1/2" Length with Ferrite Slug
L5	11 Turns, #16 AWG, Enameled on Torroid, Micrometals, T50-2
Board Material	Double Sided Copper 1/16" Thick

57

PACKAGE MECHANICAL

Cumbel	millimeters		inches			
Symbol	Min	Тур	Мах	Min	Тур	Мах
A	5.59		5.84	0.220		0.230
В	19.94			0.785		
С	18.29		18.54	0.720		0.730
D	24.64		24.89	0.970		0.980
E			9.78			0.385
F	0.10		0.15	0.004		0.006
G	2.16		2.67	0.085		0.105
Н	4.06		4.57	0.160		0.180
Ι			7.11			0.280
J	6.10		6.48	0.240		0.255

Table 8. M113 Mechanical Data

Figure 7. M113 Package Dimensions

Note: Drawing is not to scale.

REVISION HISTORY

Table 9. Revision History

Date	Revision	Description of Changes
November-1992	1	First Issue
25-May-2004	2	Stylesheet update. No content change.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

57